Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Neuroinflammation ; 18(1): 167, 2021 Jul 29.
Article in English | MEDLINE | ID: covidwho-1331945

ABSTRACT

BACKGROUND: Neurological complications are common in patients affected by COVID-19 due to the ability of SARS-CoV-2 to infect brains. While the mechanisms of this process are not fully understood, it has been proposed that SARS-CoV-2 can infect the cells of the neurovascular unit (NVU), which form the blood-brain barrier (BBB). The aim of the current study was to analyze the expression pattern of the main SARS-CoV-2 receptors in naïve and HIV-1-infected cells of the NVU in order to elucidate a possible pathway of the virus entry into the brain and a potential modulatory impact of HIV-1 in this process. METHODS: The gene and protein expression profile of ACE2, TMPRSS2, ADAM17, BSG, DPP4, AGTR2, ANPEP, cathepsin B, and cathepsin L was assessed by qPCR, immunoblotting, and immunostaining, respectively. In addition, we investigated if brain endothelial cells can be affected by the exposure to the S1 subunit of the S protein, the domain responsible for the direct binding of SARS-CoV-2 to the ACE2 receptors. RESULTS: The receptors involved in SARS-CoV-2 infection are co-expressed in the cells of the NVU, especially in astrocytes and microglial cells. These receptors are functionally active as exposure of endothelial cells to the SARS CoV-2 S1 protein subunit altered the expression pattern of tight junction proteins, such as claudin-5 and ZO-1. Additionally, HIV-1 infection upregulated ACE2 and TMPRSS2 expression in brain astrocytes and microglia cells. CONCLUSIONS: These findings provide key insight into SARS-CoV-2 recognition by cells of the NVU and may help to develop possible treatment of CNS complications of COVID-19.


Subject(s)
Blood Vessels/metabolism , COVID-19/complications , HIV Infections/metabolism , HIV-1 , Neurons/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism , SARS-CoV-2 , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Astrocytes/metabolism , Brain Diseases/etiology , Cells, Cultured , Endothelium, Vascular/metabolism , Humans , Microglia/metabolism , Nervous System Diseases/etiology , Primary Cell Culture , Receptor, Angiotensin, Type 2 , Virus Replication
SELECTION OF CITATIONS
SEARCH DETAIL